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ABSTRACT 
This paper suggests one method to process fMRI time series based on Bayesian inference for group analysis. The 

method is based on Bayesian inference to divide group into multilevel by session, subject and group levels. It 

compares covariance to select prior to reinforce posterior probability in group analysis. At the same time it 

combines classical statistics, i.e., t-statistics to obtain voxel activation at subject level as prior for Bayesian 

inference at group level.  Through the method, it can effectively decrease computation expensive and reduce 

complexity. Therefore the experimental results show robust on Bayesian inference for group analysis.  
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1. INTRODUCTION 
Functional MRI is a noninvasive technique for 

studying brain activities [Lin08]. It measures blood 

oxygenation level dependent (BOLD) with 

hemodynamic response signal to identify brain 

activation by stimulus.  BOLD fMRI characterizes 

hemodynamic response function (HRF) to measure 

brain spatial distribution based on neural activity by 

vascular hemodynamic variation. There are several 

common objectives in the analysis of fMRI data. 

From localizing regions of the brain activated by 

stimulus to detect brain distributed networks, it 

mainly focuses on brain function and makes 

predictions about psychological or disease diagnosis.  

Currently on fMRI data analysis, most attentions 

from researchers focus on brain functional 

connectivity and perform cognition functions. To 

understand the brain, we depend on conceptual 

neuroscience, anatomical structure, statistical 

methods and some causal models that link 

psychological and physiological activations about 

how it works for observation and experimental data 

[Smi04]. Most ways of fMRI analysis depend on the 

brain that shows increased intensity at some points in  

time series of fMRI data with stimulation [Fri05]. 

Most of analysis fMRI data methods are divided into 

two categories: One is model driven and the other is 

data driven [Kai09].  

For model driven, it mainly defines model to 

construct the relationship between the stimulus and 

response. Commonly it uses classical statistics 

methods, to measure data characteristics. Thus, the 

statistical methods of fMRI data are facing challenge. 

Alternative method is data driven. It is based on data 

intensity to compute distance, similarity or feature, 

for instance, Cluster analysis, independent 

component analysis (ICA), principle component 

analysis (PCA) and self-organization mapping etc.,. 

For large number of data, reducing computational 

complexity makes the important decision.  

Most analysis methods for fMRI data are based on 

classical statistics methods with a general linear 

model (GLM) to estimate parameter for each voxel 

and inference by t-Statistics to map p-value to detect 

voxel activition. Through reject H0 assumption, it 

shows voxel activation or no activation with 

threshold to reject or accept H0. Dur to issues on 

classical method, e.g., never reject alternative 

assumption meaning activation always occurred, and 

existing false positive ratio (FDR) for multiple 

comparison problems. To avoid these issues, 

alternative method is Bayesian. Bayesian method, on 

the contrary, can give the probability that the effect is 

greater than some threshold values under voxel 

activation. Hence, these limitations of the classical 

approaches could be overcome by using the Bayesian 
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method. It provides a means of updating the 

distribution over parameters from the prior to the 

posterior distribution on the observed data. 

Especially Bayesian methods are introduced to 

analyze group data processing.  

As such it proposed the first Bayesian group 

inference approach using a hierarchical model 

[Mar12]. It uses hiearchical linear model and 

Bayesian rule under the specification of priors on the 

assumption parameters or activations. Through it 

assumes that prior distrbution is fitted to normal 

distrbution, it estimates parameters and error by 

expectation maximum (EM) algorithm. Bayesian 

uses high-level estimate as prior and then enable to 

estimate posterior inferences about the parameters in 

low-level. Hierarchical Bayesian models consist of 

an observation model for the data and priors for the 

unknown parameters.  

This paper suggests a multilevel Bayesian inference 

method for health group analysis based on 

hierarchical model. The multilevel group method is 

proportional to multiple levels according to first level 

as prior for group level based on Bayesian posterior 

probability.  

For the paper structure, section II presents Bayesian 

inference theory and estimation procedure in 

multilevel group analysis. Section III shows an fMRI 

case analysis with lower level of individual subject 

and with higher level of group. Section IV discusses 

the effects of multilevel group about estimated 

parameters and compares commons among different 

subjects. The last part we specify Bayesian methods 

for fMRI dynamic analysis in the future. 

2. BAYESIAN METHODS  
Bayesian methods summarize evidences for 

statistical inference with conditional or posterior 

inference based on the posterior distribution of the 

activations. The first paper based on Bayesian 

inference was on PET in 1993 and the first Bayesian 

approaches in fMRI with point estimation Maximum 

a Posterior Bayesian approaches to incorporate prior 

information. A fully Bayesian statistics approach as 

the first paper considered the full posterior 

probability distribution was appeared in 1998 [Mar12].  

Most methods [Fri02a, Fri02b] describe Bayesian on 

hierarchical linear model to form first level 

recursively. Some combine hierarchical model with 

classical by Empirical Bayesian, called all in one 

[Woo04] that two methods are based on the same 

principle by covariance components and EM. And 

also the two methods can complement more activated 

voxels each other. All in one method includes fixed 

effects and random effects. On the model, its higher 

level estimator for parameters could be prior in lower 

level, and parameters estimation uses EM algorithm. 

Some methods [Woo04, Bec03] analyzed fMRI data 

by summary statistics passing the first level 

parameters of interesting as prior to the second level. 

They compared two methods to compute top level 

likelihood with marginal posterior and a Markov 

chain Monte Carlo (MCMC) algorithm. And also in 

[Neu03], it gives the different explanations according 

to Bayesian principles guided by [Box92]. For group 

analysis, it shows multilevel from subject level to 

group level. In [Cam11], it uses Bayesian to cluster 

analysis for group level. The method [Mar12] shows 

the all procedures of Bayesian in fMRI analysis, 

Bayesian methods are used by statistics inference 

about activation voxels and by group analysis, and 

also they are used into Bayesian learning in dynamic 

casual model (DCM) with effective connectivity. 

Especially in [Woo11], it demonstrates that 

hierarchical Bayesian analysis outperforms 

conventional individual-level or group-level 

maximum likelihood estimation in recovering true 

parameters. 

For group analysis, Bayesian methods relay on prior 

selection. Usually prior is from temporal or spatial, 

or both. Temporal prior is commonly designed by 

hierarchical model divided into session level, subject 

level and group level to form two levels. For spatial 

prior, some methods use Brain regions or areas to 

characterize the spatial characteristics of the HRF 

using Bayesian inference and spatial priors over the 

regression coefficients [Pen03]. 

This paper proposes a multilevel method for group 

based on Bayesian hierarchical model to describe the 

correlation structure of the observed data. The model 

provides a joint posterior distribution of voxel in 

order to determine the statistical significance of the 

voxel correlations. The method combines Bayesian 

with hierarchical linear model to estimate parameters 

from observed data by EM algorithm in group 

analysis. About prior selection, it suggests that prior 

is selected from different individual subjects based 

on voxel in single subject through classical first level 

to estimate parameters. Thus, it uses Bayesian rules 

to compute posterior probability as next subject prior 

at the same voxel estimation recursively.  

According to the Bayesian inference based on 

hierarchical linear model, the computation procedure 

of the model in details is shown as Figure 1. 

For fMRI data, Bayes methods directly obtain 

posterior distribution of parameters combined prior 

with observed data on unknown parameters and 

easily to compute the probability of parameters by 

Bayesian rules. These priors can be estimated from 

given the data and they have observed multiple 

instances of the effect in interested regions. All the 

estimation processing is referred to as empirical 

Bayes [Ash03]. 

http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Statistical_inference
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Figure 1. Multilevel group analysis procedure 

based on Bayesian. 

Bayesian on hierarchical model uses high-level 

estimate as prior and then enable posterior inferences 

about the parameters in low-level. It consists of an 

observation model for the data, given the parameters, 

and priors for the unknown parameters. Inference is 

then based on the posterior distribution of the 

parameters given the data [Mor83, Geo85].  

Modeling  
For groups analysis, the model constructs different 

levels for session level, subject level and group level. 

As shown in Figure 2, it divids data into hierarchical 

levels. 
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 Figure 2.  Group hierarchical components. 

The model is based on hierarchical linear model to 

construct multiple levels parameters relationship 

among group with two levels including voxel-level 

and group-level. These parameters are from different 

subjects. The hierarchical linear model is defined by 

the observed data as Y, and design matrix as X and 

error  , according to the hemodynamic response with 

observed data under stimulus, the hierarchical linear 

model for individual subject as equation (1).  
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The equation (1) is expressed to observed data Y 

which observed data Y including each voxel time 

series with n scans and design matrix X which has 

contrast regression coefficients with interest. And 

also it uses    to describe amplitude as parameters.  

In group analysis, these subjects have the same 

scanning environment and also have similar 

background, i.e., age, education, health or gender. 

Through these similarities of group, we assume that 

they have similar contrast regression of interest effect. 

Thus, hierarchical linear model is based on GLM to 

derive parameters from multi-subjects into multiple 

levels among group. It shows Hierarchical linear 

model as (2).  
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The equation (2) describes group has m subjects and 

single subject has n scans in time series for one voxel. 

Bayesian Rule 
According to the two levels model, we use Bayesian 

rule to induce posterior probability distribution by 

prior distribution. Bayesian is to calculate the 

posterior distribution over prior knowledge and some 

new observed data on the first level. By Bayes’ rule, 

the posterior having seen data y is given by (3): 

 (   )=
 (   ) ( )

 ( )
               (3) 

where   (   ) is marginal likelihood or evidence 

and  ( ) as prior. All marginal likelihood functions 

have the same distribution as prior distribution fitting 

to normal distribution.  

At first, according to the prior distribution as normal 

distribution     (    ) , it gives  ( )  and  (   ) 
likelihood functions as equation (4). 
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About prior  ( ) which is to compute in (5): 
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By Bayesian rule (6) to obtain  (   ) :  

P(  y) p( )* P(y| )               (6) 

We obtain the p(  y) probability density function in 

(7). In details, it is described at [Box92]. 

   (   )  
(  
     

  )
 
 

√  
 

    [ 
 

 
(  
     

  )(   ̅) ] (7) 

Its mean and covariance are shown as equation (8). 
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Combining the hierarchical linear model with 

Bayesian rule in group, it has basic formulation as 

below (9).  

 ( |          )   (          | ) ( ) 
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     ) 

                  (              ) (    )   (9) 

This induction is from [Bra96]. Thus, it combines all 

formulations into multilevel in group analysis to 

show posterior and prior relation as formula (10).  

 ( ( ))   ( (   )  (   )) ( (   )  (   )) 

                     ( (   )  (   )) ( (   ))               (10) 

For prior selection, some suggest spatial prior [Pen05] 

and some use wavelet coefficients as prior [San12]. 

As like Stephan [Neu03] said, “Today’s posterior is 

tomorrow’s prior” which we use the rule as one 

subject parameters as prior for next subject in group 

analysis to reduce computation cost and complexity. 

Estimation 
We use an empirical Bayes methodology to estimate 

the hyperparameters in EM algorithm and, as these 

hyperparameters are shared by all subjects in the 

group. Parametric empirical Bayes (PEB) can be 

formulated classically in terms of covariance 

component estimation (e.g. within subject vs. 

between subject contributions to error) [Mor83, 

Geo85]. Through the result of p(  y), we estimate 

posterior mean and posterior covariance.  

To estimate the covariance components, many 

different computation methods are used, for example, 

some use point estimation, some use maximum a 

posterior probability (MAP) with MCMC under 

numerical integration unavailable.  

For Bayesian posterior probability estimation, it is 

utilized by EM algorithm. In [Fri02a], it uses EM 

algorithm to estimate error and prior covariance. It 

has two basic steps in EM algorithm as (11).  

For two steps, one is E-step and the other is M-step.  

E-step:  ( | ( ))   (    ( (   ))    ( )) 

M-step:  (   )        ( ( | ( )))        (11) 

E-step computes likelihood function according to i
th

 

effect or initial value by the first subject and M-step 

makes likelihood function maximum to obtain new 

parameters. Iteratively it obtains estimator through 

the two steps iteratively until convergence. 

Inference 
This section describes the construction of posterior 

probability maps that enable conditional or Bayesian 

inferences about regional specific effects in 

neuroimaging. Posterior probability maps (PPMs) are 

images of the probability or confidence that 

activation exceeds some specified threshold, given 

the data [Fri03]. It will make mean as Bayesian 

estimator to compute p by (12). 

P=1- (
        

√       
)                     (12) 

 .  is the cumulative density function of the unit 

normal distribution. An image of these posterior 

probabilities constitutes a PPM. According to the p-

value, it will map PPMs to show the activation 

distribution about voxels on confidence 95%. The 

probability of activation by given the data is the same 

at any particular voxel, whether one has analyzed that 

voxel or the entire brain.  

Bayesian inference procedure is shown by Figure 3. 

At the first level of the hierarchy, it corresponds to 

the experimental effects at voxel-level and obtains  

Prior distribution

Bayesian rule

Posterior distribution

Estimate prior 

covariance

Prior known?

Compute posterior 

Mean and covariance

Compute p-value

PPMs

T

F

 

Figure 3. Bayesian inference with PPMs 

procedure. 



the probability of voxel activation. At the second 

level of the hierarchy, it comprises the effects over 

subjects through the first level or voxel-level effects. 

Thus, statistics from a lower level in the hierarchy 

are needed in the analysis of the next level.  

All the procedure is focused on posterior probability 

computation. At the same time, Bayesian inference 

requires prior known or unknown estimated from 

given data. This posterior density can be computed, 

under Gaussian assumptions, using Bayes rules. 

PPMs require the posterior distribution or conditional 

distribution of the activation (a contrast of 

conditional parameter estimates) given the data 

[Ash03]. 

As above the procedure, we use the procedure to 

compute the probability of activation for each voxel 

in one subject and uses PPMs to show the effects of 

statistics by Bayesian. 

3. EXPERIMENTS 

Data Collection 
In this experiment, we choose the dataset which 

consists of 24 contiguous slices, 64×64×24 in each 

volume with 2×2×2 mm
3
 voxels in thickness 5mm 

with whole brain BOLD response acquired using 

3.0T fMRI system. Each subject was permitted to 

take four sessions and each session is achieved by 

150 scans in functional images. Commonly, the 

dataset still includes structural images T1*and DTI. 

For block design, it has blocks of 6 scans with 12 

blocks by delete the first 6 scans in TR 2s. We design 

the task with the condition for successive blocks 

alternated between rest and visual picture stimulation, 

starting with rest. 

Preprocessing 
During scanning fMRI data, although usually subject 

is required to fix in a frame to avoid motion to reduce 

images artifacts, due to machine heating effects, 

physical effects as cardiac and respiration, and 

moving from subjects, these images from scanning 

include some noises. Some noises from machine 

heating with high frequency are eliminated by high 

frequency filters rather than some noises can be 

deleted by filters such as cardiac and respiration. 

Some artifacts from motion can be corrected by 

preprocessing.     

The key issues of preprocessing in statistical 

parameter mapping (SPM) are mainly involved: (1) 

realignment: It completes motion correct by align 

images according to the first image in the each 

session and align other sessions according to the first 

session; (2) coregistration: Match images from same 

subject but different modalities by coregistration. It 

supplies mean images in data to register structural 

image solving consistence between functional images 

and structural images; (3) segmentation: It segments 

structure T1* image to grey matter, white matter and 

CSF. Therefore, it obtained some parameters for 

normalize functional images; (4) normalization: 

Make results from different studies compared by 

aligning them to standard space it can deal with 

different Talairach problems. It normalizes functional 

images onto template images, for example, EPI 

template; (5) smoothing: Through removing lower 

frequency noises, it extends larger spatial SNR in 

spatial overlap by blurring over minor anatomical 

differences and registration errors; For our 

experiment, we choose realignment and normalize to 

reduce motion artifacts and make data being 

consistence. Due to the classical inference smoothing 

as preprocessing to improve SNR, we separate data 

without smoothing for Bayesian 1
st
 level. 

Results 
Efficient computation at the second-level requires 

full access to the first-level parameter estimates and 

associated covariance. This involves both the 

variances of the parameter estimates and the 

covariance between different parameters [Bec03]. The 

data is transferred from a single time-series to a 

single statistical value.  

PPMs show posterior probability p value about 

activation in group analysis. According to the 

activation,  is given the results in PPMs which plot a 

map of effect sizes at voxels where it is 99% sure that 

the effect size is greater than 2% of the global mean.  

Through the PPMs, the analysis compares the similar 

covariance among group in Table 1 which is 

arranged columns which are from left to right as: (i) 

region of interest; (ii) voxel-level t-value; (iii) Z-

value; (iv) means; and (v) standard deviate. The 

maximum intensity projection (MIP) of the statistical 

map is displayed [Moh07]. In Figure 4, it is shown the 

fitted response through even-relative response results 

among some subjects. With the activation on voxels 

for individual subjects, we can compare different 

subjects in the group with similar variances and 

choose the similar subjects as priors for next group 

computation. 

 Region 

(ROI) 

t Z mean Standard 

deviate 
1 L Heschl 

gyrus 

3.54 3.42 0.32 0.02 

2 R Heschl 

gyrus 

3.49 -3.83 -0.35 0.02 

3 L 

hippocampus 

4.20 4.54 0.16 0.01 

4 R 

hippocampus 

4.34 -4.20 -0.11 0.01 

5 L occipital 

gyrus 

3.23 3.34 0.13 0.01 

6 R occipital 

gyrus 

3.45 -4.12 -0.12 0.01 

Table 1. Group Bayesian estimate by prior 

iterative. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison event-relative response among group. 

4. DISCUSSIONS 
Bayesian takes directly inference combining prior 

and observed data to obtain posterior probability 

distribution of parameters. Naturally it shows the 

stability based on covariance components. Therefore, 

we estimate parameters by the two methods as priors 

and through Bayesian’s rule to compute group mean 

and covariance. The events use the same blocks 

design to simply linear equation relation between 

HRF and observed data for group analysis. For 

Bayesian mapping, posterior inference using PPMs 

may represent a relatively more powerful approach 

than classical inference in neuroimaging, without 

adjusting the p values [Ash03]. Both of methods of 

Bayesian and classical inference are applied 

threshold to obtain the PPMs. Most methods based 

on Bayesian posterior probability to estimate 

parameters [Mar12]. These computation methods for 

parameters and hyperparameters estimation mainly 

focus on accuracy and speed [Neu03].  

Some use fully Bayesian by session level, subject 

level and group level to estimate parameters of 

interest, contrasts of regression parameters with 

noninformative as prior that can be obtained more 

precise results passing summary statistics through 

different levels [Woo04]. Some show short time to 

compute parameters estimation process by using 

Bayesian inference to estimate group analysis and 

maybe extend number of subjects in group in a short. 

Nevertheless, Bayesian framework provides much 

better characteristics of single-subject responses, 

both in terms of the estimated effects and the nature 

of the inference [Ash03]. The probability that 

activation has occurredat any particular voxel is the 

same, irrespective of whether one has been analyzed 

that voxel or the entire brain. Based on the above 

points, we can do some likely “pre-analysis” to 

construct multilevel for individual subjects and group 

by their variances. In [Ade11], it uses a two-stage 

empirical Bayes prior approach to relate voxel 

regression equations through correlations between 

the regression coefficient vectors. Furthermore, in 

[Dub08], it combines whole-brain voxel-by-voxel 

modeling and ROI analyses within a unified 

framework. In [Lei09], presents the idea of activation 

centers and model the inter-subject variability in 

activation locations directly. And also its model is 

specified in a Bayesian hierarchical frame work to 

draw inferences at all levels: the population level, the 

individual level and the voxel level. 

5. CONCLUSIONS  
Due to these sessions in one subject similar each 

other, we can use batch processing to individual 

subjects to compare variances and choose the 

smallest variance effects as prior. Through the prior 

chosen, we compute other subjects’ posterior to 

reinforce the effects. With the same principle, we use 

one subject effects selected in group to be prior for 

other subjects in the same group. Especially for 

clinical diseases of brain, we can supply some 

learning methods to generalize priors from other 

patients’ features as rules to infer posterior as signs 

for physicians. Therefore, we can further develop for 

Bayesian learning for diseases in brain.  

Any approach to variance estimation (or combination 

of approaches) can easily be combined with the 

multilevel GLM to provide a practical multilevel 

method [Bec03]. Bayesian approaches present the 

significant effects by combination hierarchical model 

with posterior probability. Due to the reason, we can 

set prior as multiple levels by pair subjects in group 

analysis to increase computational speed and more 

precise effects. No matter, Bayesian has a long way 

to explore fMRI data analysis, e.g., Bayesian model 

 

 



selection [Roa10, Fri11], combining with MEG/EEG 

[Hen10], for structural brain network [Hin13], 

especially for free energy brain [Fri12].  Furthermore, 

Bayesian would be served more for brain science. 
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